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ABSTRACT

We investigate the universal characteristics of the simulated
time horizon of the basic conservative parallel algorithm
when implemented on regular lattices. This technique [1,
2] is generically applicable to various physical, biological, or
chemical systems where the underlying dynamics is asyn-
chronous. Employing direct simulations, and using stan-
dard tools and the concept of dynamic scaling from non-
equilibrium surface/interface physics, we identify the uni-
versality class of the time horizon and determine its impli-
cations for the asymptotic scalability of the basic conserva-
tive scheme. Our main finding is that while the simulation
converges to an asymptotic nonzero rate of progress, the sta-
tistical width of the time horizon diverges with the number
of PEs in a power law fashion. This is in contrast with the
findings of Ref. [3]. This information can be very useful, e.g.,
we utilize it to understand optimizing the size of a moving
“time window” to enforce memory constraints.
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1. INTRODUCTION

Massively parallel simulations of complex systems with
asynchronous dynamics, often referred to as parallel discrete-
event simulations (PDES), are far from new for computer
scientists. On the other hand, despite the fact that PDES
has a long history as far as scalability and applications are
concerned [4, 5], very few of the PDES techniques have fil-
tered through to the physics community. Even the simplest
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random-site update Monte Carlo schemes [6], where update
attempts correspond to Poisson arrivals, were long believed
to be inherently serial (at least in the physics community).
Since a large number of physicists are engaged in the mod-
eling and large-scale simulation of complex systems, rang-
ing from magnetization dynamics and epidemic models to
market models and internet traffic (which are perfect candi-
dates for PDES) it is important to learn the algorithms and
schemes, which have long been considered standard among
computer scientists working on simulations. In this regard,
Lubachevsky’s work [1, 2] was rather illuminating, by illus-
trating how to apply efficiently the conservative scheme [7,
8] to the Ising model on a lattice with Glauber dynamics [9].
In this basic model for ferromagnets, the discrete events are
the possible spin-flips, and the actual flipping probability de-
pends on the energetics of the nearest-neighbor magnetic in-
teraction [6]. The nearest-neighbor interaction implies that
in order to ensure causality, processing elements (PE) need
to exchange their local simulated (or “virtual”) times only
with “neighboring” processing elements in the virtual topol-
ogy.

Systems which can be modeled on a lattice (regular grid)
with short-ranged interactions constitute a large class among
physics, biology, and engineering applications. For these
systems the conservative scheme can be highly efficient. For
example, it was implemented for modeling magnetization
switching [10] and the dynamic phase transition in highly
anisotropic thin-film ferromagnets [11]. Communication times
between PEs and possible idling due to the conservative syn-
chronization protocol can be greatly suppressed by each PE
carrying a large block of sites (spins) [1, 2], yielding en-
couraging efficiencies and utilizations (fraction of non-idling
PEs) [10]. Since there is a finite number of processing el-
ements on any architecture, one can typically be satisfied
with these “experimental” observations.

There is an obvious question, however, lurking in the back-
ground for all massively parallel schemes: how does the uti-
lization behave in the asymptotic limit where the number of
PEs goes to infinity? While this question for all practical
purposes might seem academic, it truly lies at the heart of
any parallel-discrete event simulation scheme. From a “sta-
tistical physics” standpoint, one would like to know, e.g.,
what the leading behavior and/or corrections are of the uti-



lization as the “infinite” number of PE limit is approached
through large but finite number of PEs. The answers to
these questions can be very useful to model and understand
the performance of the algorithm in the limit of large number
of PEs. In statistical physics, in the context of interacting
systems with many degrees of freedom, these behaviors are
referred to as “finite-size effects”. Obtaining quantitative
answers for these types of questions are far from trivial, and
innocent looking assumptions [3] in order to obtain an ana-
lytically computable scalability model can yield misleading
predictions.

These are exactly the types of scalability questions where
statistical physics may have a lot to offer and contribute.
We believe that the tools and frameworks of modern sta-
tistical physics, in particular those of non-equilibrium inter-
face/surface growth [12, 13, 14], can be very helpful in an-
alyzing and understanding the asymptotic scalability prop-
erties of parallel discrete-event simulation schemes. To this
end, one must look at the simulation scheme itself as an
interacting system of individual PEs where the synchroniza-
tion rules among the PEs constitute the effective interaction.
The most important variable to track is the set of local sim-
ulated (or virtual) times. The evolution of this simulated
time horizon, in particular, its average progression rate and
statistical spread, will determine the scalability properties
of the corresponding PDES scheme.

We illustrate the potential of this approach by tackling
fundamental scalability issues for the conservative scheme.
We show how the evolution of the simulated time horizon for
these schemes fits into the general picture of non-equilibrium
surface/interface growth. Then we demonstrate that the
evolution of the time horizon exhibits kinetic roughening,
observable in numerous other artificial and natural growth
processes, including molecular beam epitaxy, electrochem-
ical deposition, fluid flow in porous media, and growth of
bacterial colonies [12, 13].

We must note that similar approaches, namely finding
analogies between the evolution of the time horizon and
that of known physical systems proved to be rather help-
ful for optimistic schemes as well. There is some evidence
[15, 16, 17] that the time horizon in rollback-based schemes
can exhibit self-organized criticality and power-law spatio-
temporal correlations, which can be crucial to extract the
scalability properties. Also, analytic models for the event
horizon for optimistic schemes were studied by others [18,
19, 20, 21, 22].

2. BASICCONSERVATIVE SCHEME ON REG-

ULAR LATTICES

We consider a d-dimensional hypercubic regular lattice
topology where the underlying physical system has only
nearest-neighbor interactions (e.g., Ising model with Glauber
spin-flip dynamics). In this paper we consider the case of
simple Poisson asynchrony. Update attempts at each site
are independent Poisson processes with the same rate (thus
the random simulated time increments between two succes-
sive update attempts are exponentially distributed) and are
also independent of the state of the underlying physical sys-
tem. The consequence of the latter is that the evolution of
the simulated time horizon completely decouples from the
behavior and evolution of the underlying physical system.
This not only makes the evolution of the time horizon ac-

cessible to direct simulations and the scalability analysis eas-
ier, but it is indeed applicable to a large number of physics
models and other applications.

For simplicity, we discuss first the “worst-case” scenario,
when each PE carries one site (e.g., one spin). In this basic
conservative scheme [1, 2], each PE generates its own local
simulated time for the next update attempt. The set of local
simulated times for N PEs, {7;(t)}iL;, constitutes the simu-
lated time horizon. Here t is the discrete number of parallel
steps simultaneously performed on each PE directly related
to real/wall-clock time, or if the architecture operates in an
asynchronous execution mode, ¢ is simply the continuous
real time. On a regular d-dimensional hypercubic lattice
N=L%, where L is the linear size of the lattice. In physics
applications one typically specifies the initial configuration
(i.e., at 7=0) of the underlying physical system. This trans-
lates to 7;(0)=0 for every site for the initial condition of
the parallel simulation. Then at each parallel update, only
those PEs for which the local simulated time is not greater
than the local simulated times of their nearest neighbors, can
increment their local time by an exponentially distributed
random amount, 7;(¢). Without loss of generality we take iid
exponential variables with mean one, (n;(¢))=1. The other
PEs must idle. Due to the continuous nature of the random
simulated times, for ¢ > 0 the probability of equal time up-
dates for any two sites is of measure zero. The comparison of
nearest neighbor simulated times and idling if necessary en-
forces causality. Also, at worst, the PE with the global min-
imum simulated time can make progress, so the algorithm
is free from deadlock. For this basic conservative scheme,
the theoretical efficiency or utilization (ignoring communi-
cation overheads) is simply the fraction of non-idling PEs.
This corresponds to the density of local minima of the simu-
lated stochastic time horizon which determines the average
progress rate of the simulation. Another important aspect
of the simulation is the tightness of the distribution of the
local simulated times. This property can have serious effects
on the “measurement part” of the algorithm, e.g. when one
attempts to collect and compute simple statistics for the
full underlying physical system “on the fly”. Therefore, one
must determine the statistical spread (width) of the time
horizon as was pointed out in Ref. [3].

To obtain an analytically tractable scalability model, Green-
berg et.al [3] introduced the K-random model. Here at each
update attempt, PEs compare their local simulated times
to the local simulated times of K randomly chosen PEs (re-
chosen at every update attempt). They showed that in the
t—o00, N—oo limit the average rate of progress of the simu-
lation converges to a non-zero constant, 1/(K +1). Further,
they also showed that the evolution of the time horizon con-
verges to a traveling wave solution described by a finite width
of the distribution of the local times. Finally, they suggested
that the qualitative properties of the K-random model are
universal and hold for regular lattice models as well. As we
will illustrate, the underlying connection topology has cru-
cial effects on the “universal” behavior of the evolution of
the time horizon and their conjecture [3] for the width for
regular lattices does not hold.

«

3. NON-EQUILIBRIUM SURFACE GROWTH
AND KINETIC ROUGHENING

The conservative synchronization protocol together with



Figure 1: Snapshot configuration of the actual sim-
ulated time horizon for the one-dimensional one site
per PE topology with L=10,000 PEs. The time hori-
zon propagates “upwards” in the figure. w indicates
the typical spread of the time horizon.

the communication topology of the PEs fully specify the
“microscopic” dynamics of the growth process associated
with the evolution of the time horizon. A snapshot of the
evolving and fluctuating time horizon is shown in Fig. 1. In
order to identify the universal characteristics of this time
“surface”, one must define the observables, which carry es-
sential features of this genuinely non-equilibrium growth
process. In the basic conservative scheme (one site per PE)
the average progress rate (utilization) is the average density
of local minima of the evolving and fluctuating time horizon,
(u(t))n. The other important quantity is the average width
(spread) of the time horizon

(W(®) y = <§ 3 Im(e) - T<t>12> SN

where 7(t)=(1/N) N | 7i(t), N=L?. Here {...) denotes
an ensemble average, i.e. an average over many independent
simulations. In the case of translational invariance (e.g. a
ring or a torus) the width (w?(t)) is just ([r:(t) — 7()]*)
independent of site i. The behavior of this quantity alone
typically captures and identifies the universality class of the
non-equilibrium growth process [12, 13, 14].

The conservative synchronization protocol introduces (al-
though short-range) “interactions” between PEs. As a re-
sult, the correlation length between local simulated times be-
gins to grow as the simulation evolves. In principle, one can
extract this lateral correlation length from the equal-time
“height-height” correlation function (7;(¢)7;(t)), or from its
Fourier transform, the structure factor [12, 13, 14].

To characterize this growth process, we can exploit the
analogy which exists between the evolution of the time hori-
zon and kinetic roughening in general non-equilibrium sur-
faces. Then we will build on the wealth of results obtained
for various non-equilibrium surfaces in the last two decades
[12, 13, 14]. In these systems, in general, the lateral cor-
relation length between sites grows as a power law, fwtl/ o
where z is the dynamic exponent. Having a finite system,
however, the correlation length cannot grow beyond the lin-
ear system size, L. Thus, one can formally extract the
crossover time tx~L*. For very early times, mostly mi-
croscopic details of the dynamics influence the width. For
intermediate times, where t<tx still, the width typically

grows as a power law (w?(t))r~t??, where 8 is called the
growth exponent. For late times, t>ty, the width saturates
for any finite system size. In this regime the surface reaches
a steady-state evolution and the fluctuations about the mean
are stationary. The saturation or steady-state value of the
width, however, scales as a power law with the system size,
(w?(c0))L~L**, where a is the roughness exponent. To
summarize the temporal and system-size dependence of the
width (except for the very early times), we have

2 20 if <t
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The time horizon through its progress exhibits exactly the
above scaling behavior [Fig. 2(a)]. This type of temporal and
system-size scaling is consistent with the dynamic scaling
hypothesis [12, 23] and can be expressed through the Family-
Vicsek scaling relation

(w(t)), = L** f(¢/L7) ®3)

together with the important a=0z scaling law. Note that
the scaling function f(z) depends on ¢ and the linear system
size L only through the specific combination t/L*, reflecting
the importance of the crossover time ¢x. For small values
of its argument f(x) behaves as a power law, while for large
arguments it approaches a constant

z? ifzxd
flz) ~ { const. if z>1 (4)

The existence of the above scaling function implies that if
one plots the rescaled variables (w?(t))r,/L** vs t/L?, then
curves for different system sizes collapse for intermediate and
late times. We confirmed this data collapse for the simulated
time horizon [Fig. 2(b)].

The enormous number of “microscopically” different non-
equilibrium growth processes typically fall into a fewer num-
ber of (universality) classes. The systems (ranging from bi-
ological and chemical systems, surface deposition, or here
in this paper, the time horizon), which belong to the same
universality class, despite having very different microscopic
growth mechanisms, exhibit the same macroscopic charac-
teristics (e.g., for the width (w?)), and are described by the
same set of exponents «, § (and z=a/f). Given the micro-
scopic rules for the evolution of the simulated time horizon
(that is, the local minima are incremented by an exponen-
tially distributed random number) the most important task
is to determine which universality class it belongs to. Re-
cently it was shown by directly simulating the time horizon
and also by deriving a coarse-grained stochastic equation
of motion for its evolution [24], that the evolution of the
time horizon on regular lattices belongs to the Kardar-Parisi-
Zhang (KPZ) universality class [25]. In the next section we
discuss the implication of this finding on the scalability of
the conservative scheme.

4. SCALING AND SCALABILITY

We discuss in detail the one dimensional case (N=L) with
periodic boundary conditions (i.e. a ring). In this case the
KPZ exponents are known ezactly and fully agree with our
simulations. The evolution of the time horizon was also
studied in two and three dimensions and the phenomenon of
kinetic roughening was observed [26]. In higher dimensions,
in general, exact solution is not available and the simulation
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Figure 2: (a) Kinetic roughening of a growing sur-
face illustrated through the actual simulated time
horizon for the one-dimensional one site per PE ba-
sic conservative scheme. Note the log-log scales, in-
dicating the power-law growth of the width before
saturation. The dashed line corresponds to a power
law with the exact KPZ exponent 23=2/3. (b) The
same behavior as in (a), using the rescaled variables
to demonstrate the dynamic scaling hypothesis, Eq.

(3)-

of the corresponding surfaces is a challenging task [12]. Cur-
rently available best estimates for the roughness exponent
(which is the most important for the steady-state perfor-
mance) are in the range of @=0.20 — 0.40 and «=0.08 — 0.3
in two and three dimensions respectively.

Direct simulation results for the utilization (average rate
of progress) for various system sizes are shown in Fig. 3(a).
(u(t))r decreases monotonically with time towards a long-
time asymptotic limit well separated from zero. In one di-
mension a=1/2, f=1/3 (and z=3/2 due to the =0z scaling
law). The steady-state KPZ surface in one dimension is es-
sentially a random-walk profile. At coarse-grained length
scales the local slopes become independent, yielding a non-
zero average density of local minima, i.e., a non-zero average
rate of progress of the simulation in the L—oo limit in the
steady-state. It was shown [27] that the finite-size correc-
tions of the density of local minima (and hence the rate of
progress) is of the form

const.
- (5)

(u(00))r =~ (u(00))oo

This form for the finite-size effects is in full agreement with
the simulations [Fig. 3(b)]. Using the above finite-size be-

havior for the utilization, one can extrapolate to determine

its “infinite number of PE” value, yielding (u(00))cc=0.246461(7)

for the one-site-per PE nearest-neighbor interaction case.
Krug and Meakin obtained [28] universal finite-size effects
for the growth rate of generic KPZ-like processes

(u(00)) 2 = (u(00)) oo + ~prns (6)

which can be used to estimate the utilization (average rate
of progress) for higher dimensions as well. While the den-
sity of local minima is based on “microscopic” measures,
whether its asymptotic value vanishes or not, is fully gov-
erned by macroscopic characteristics and the corresponding
universality class [24, 27]. For the KPZ class this asymptotic
value is non-zero.

The above findings for the density of local minima, which
determines the average rate of progress of the simulation,
imply that the “simulation part” of the conservative scheme
is scalable. That is, if we run the simulation for long times,
the average progress rate approaches a constant. There is
some disturbing implication, however, of the kinetic rough-
ening exhibited by the time horizon. In the steady state the
width (spread) of the simulated time horizon diverges with
the number of PEs

(w?(00))z ~ L** . (7)

This scaling behavior for large L is also confirmed by sim-
ulations [Fig. 3(c)] and it is contrary to the conclusions of
Ref. [3]. This property adds an additional difficulty for col-
lecting statistics (e.g. to perform simple average) “on the
fly” through the course of the simulation. The diverging
width means that the memory requirement per PE, for tem-
porarily storing (buffering) data, diverges as we increase the
number of PEs. In this sense we may call the “measure-
ment part” of the bare conservative scheme asymptotically
not scalable. Thus, in an actual application, the programer
must implement some global synchronization or a moving
“window” with respect to the global minimum of the time
horizon.

Along these lines of questioning, one should be interested
in the extremal fluctuations of the time horizon. Namely,
what is the typical size of the fluctuations above and below
the mean. We have started to study these quantities in de-
tail, Amax (t)E(Tmax(t) - ‘T'(t)) and Amin (t)E(i—(t) — Tmin (t)),
where Tmax(t) and Tmin(t) are the global maximum and mini-
mum simulated times among L PEs, respectively. We found
that in the steady state

(Ahax(00)), ~ (Afin(00)), ~ L, (8)

i.e., they scale the same way the width (w?(c0))r does [Fig.
3(c)]. This shouldn’t come as a surprise, since this surface
is highly correlated, dominated by long-wavelength fluctua-
tions spreading over macroscopic length scales. This finding,
again, is consistent with the extremal fluctuations found for
general KPZ surfaces [29].

The above universal characteristics hold for the sensible
and more efficient many site per PE case and/or when the
interaction and the corresponding communication pattern
extends beyond nearest-neighbor PEs (but still short-ranged
with a finite cutoff). For the many site per PE case , how-
ever, the saturation will occur at a later time and the time
horizon exhibits a substantially larger width.
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Figure 3: (a) Time dependent utilization for various system sizes. (b) Steady-state utilization (average rate
of progress) as function of the inverse system size. (c) Steady-state average width and extremal fluctuations
of the time horizon. Note the log-log scales. The dashed line corresponds to a power law with the exact KPZ
exponent 2a=1. All three graphs for the one-dimensional one site per PE basic conservative scheme.

5. THEEFFECTSOFA MOVING WINDOW

As seen in the sections above, a statistical analysis of the
growing virtual time interface in conservative asynchronous
PDES shows that in the steady state, the average utilization
(u)r remains finite and (w?); diverges as L—oo. This was
demonstrated for one volume element My per PE (one site
per PE). A higher efficiency can be obtained by increasing
My . Here the “volume element” is measured in terms of
the “nearest-neighbor interaction distance”. For simplicity,
we continue to consider only the linear chain (with peri-
odic boundary conditions). For My =2, each PE will only
need to check the neighbor to the left or to the right, and
can advance its local virtual time if its local virtual time
is behind that of the checked neighboring PE’s local vir-
tual time. For My > 2, with probability (Myv — 2)/My the
PE does not need to check any neighboring PE, and with
probability 2/My it must check 7 on one of its neighbor-
ing PEs. Because of universality arguments, for all finite
My one expects that still the average utilization (u)r re-
mains finite and (w?)r, diverges as L—oo. This is because
changing My changes only local behavior of the model, but
such changes will not affect the asymptotic behavior of the
growing surface. Fig. 4 shows (u(t)) averaged over 100 tri-
als as a function of t for different L and My . Note that
for My =2 the average utilization is slightly less than 1/2,
while for My =100 it saturates at about 0.9 at large times,
and the differences for L between 10 and 10% are within the
statistical errors.

The convergence of (u(co))r to a finite value as L—oo,
reflects positively on the ability to efficiently implement this
type of PDES;, in other words the “simulation portion” of the
algorithm is scalable. However, the divergence of (w?(c0))z,
with L means that the “measurement portion” of the PDES
algorithm is not scalable. A standard way [1, 2, 4] to try
to remedy this problem is to impose a moving window of
width A. At each step the global minimum of the virtual
time horizon is calculated, this is called the “global virtual
time”, which we label as 7gvT. Then the i-th PE can only
advance its value 7; if it could do so from the previous rules
and if 7, < rgvT + A. This prevents the virtual time hori-
zon from roughening. Note that this is at the cost of a global
calculation to find 7gvT at each iteration — an expensive
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070 3—0PE=100, M,7100
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030 L

Figure 4: The average utilization (u) is shown as
a function of ¢ for different numbers of processing
elements (PE) and and different My .

calculation for large L. Examples of surfaces for different
values of A for L=1000 are shown in Fig. 5 for two different
times. Clearly, using a finite value of A keeps the interface
width from diverging. This is very useful in actual simula-
tions.

However, the question must now be asked what effect a fi-
nite A has on the average utilization. Fig. 6 shows for A=10
that for small L the average utilization does not change sig-
nificantly from the case A=oco. However, for L larger than
about 102 the value of (u) decreases. The values in Fig. 6 are
averages over 10 independent sequences of random numbers
and averaged over time steps between 20,000 and 100,000.
Error estimates rely on having the second moment of the
probability distribution of u approximated reasonably well
by the 10% independent trials. The error bars in Fig. 6 repre-
sent the probable error that was estimated from this sample
size. Consequently, the error bars should be regarded as
an approximate lower bound on the error. It is seen that
(u) decreases for A=10 fixed, and the utilization seems to
decrease in a way that it goes toward zero as L—oo. Con-
sequently, introducing a finite A makes the “measurement
phase” of the PDES scalable, but it is not yet clear whether
the “simulation phase” of the PDES remains asymptotically
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scalable.

6. CONCLUSIONSAND OUTLOOK

We studied the statistical properties of the basic conserva-
tive parallel scheme for regular lattice topologies. We found
that the evolution of the simulated time horizon belongs to
the well known KPZ universality class of non-equilibrium
surfaces. This type of growth is characterized by a non-zero
density of local minima, i.e., implying a non-zero rate of
propagation in the infinite PE limit. We also determined
the asymptotic finite-size corrections to this constant when
the number of PEs is large. Thus, the “simulation” part
of the algorithm is scalable. Further, we showed that the
spread (width) of the time horizon approaches a finite con-
stant for finite number of PEs, but this constant diverges in
the infinite number of PE limit in a power-law fashion. The
same holds for the extremal fluctuations above and below
the mean. We may refer to this “macroscopic” roughness
of the simulated time horizon as the “measurement part” of
the bare conservative scheme not being scalable. That is,
there is some extra difficulty associated with measurement
taking “on the fly”. Intermittent data on each PE has to
be stored until all PE reaches the simulated time instant at
which some statistics collection, e.g., simple averaging over
the full physical application is to be performed. The diverg-
ing spread of the time horizon, however, implies diverging
storage need for this purpose on every PE. Thus, the pro-
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Figure 6: The average steady-state utilization for
A = 10 is shown as a function of L, averaged over
times between 2x10* and 10°.

grammer has to implement some global synchronization, or
windowing technique to limit the spread of the simulated
time horizon in order not to exceed the memory constraint.
By knowing exactly the finite-size dependence of the spread,
one can determine the optimal time between global synchro-
nizations or the optimal window size.

Our findings are universal in the sense that they hold for
any short-range “interaction” topology for PEs on regular
lattices. Also they are valid in the case when each PE carries
a block of sites. The asymptotic scaling behavior is again
governed by the KPZ exponents, in such a way that for
larger and larger blocks, there is a crossover from the almost
“random deposition” [12] to KPZ-like growth at a later and
later time.

Regarding the width of the time horizon of the bare con-
servative scheme, we arrived at a very different conclusion
than that of Greenberg et.al. [3]. They suggested that con-
vergence to a traveling-wave solution in the t—oo, N—oo
limit is universal and applicable for regular lattices as well.
In obtaining this result they made the assumption that re-
placing the “interaction” between nearest-neighbor PEs on
a regular grid with the same interaction between randomly
chosen PEs does not change the universality class of the time
horizon. It does. Comparing the local time for each PE to
K randomly chosen others essentially turns the model in to
a mean-field-like one where the time surface is short-range
correlated and has a finite width in the infinite number of
PE limit. However, using their idea, and realizing how cru-
cial the communication topology of the PEs, we currently
investigate how to turn the original conservative scheme on
regular lattices into a fully scalable one, where both the “sim-
ulation” and the “measurement” parts are scalable, without
the need for any global synchronization or windowing tech-
nique.
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